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Abstract. The COVID-19 trajectories worldwide have shown several surprising 

features which are outside the purview of classical epidemiological models. These include 

(a) almost constant and low daily case rates over extended periods of time, (b) sudden 

waves emerging from the above solution despite no or minimal change in the level of non-

pharmaceutical interventions (NPI), and (c) reduction or flattening of case counts even 

after relaxation of NPI. To explain these phenomena, we add contact tracing to our 

recently developed cluster seeding and transmission (CST) model, which is predicated on 

heterogeneous rather than homogeneous mixing of people in society. With this addition, 

we find no fewer than four effects which make prediction of epidemic trajectories 

uncertain. These are (a) cryptogenic instability, where a small increase in population-

averaged contact rate causes a large increase in cases, (b) critical mass effect, where a wave 

can manifest after weeks of quiescence with no change in parameter values, (c) knife-edge 

effect, where a small change in parameter across a critical value can cause a huge change 

in the response of the system, and (d) hysteresis effect, where the timing and not just the 

strength of a particular NPI determines the subsequent evolution of the epidemic. Despite 

these effects however, it is a robust conclusion that a good contact tracing program can 

effectively substitute for much more invasive measures. We further find that the contact 

tracing capacity ratio – a metric of the stress to which the tracers are subject – can act as a 

reliable early warning indicator of an imminent epidemic wave. Extensive simulations 

demonstrate that whenever there is a drop in capacity ratio during a period of low daily 

infections, there is a very high probability of the case counts rising significantly in the 

immediate future. 

Author summary. Close to two years into the pandemic, the trajectories of 

COVID-19 in different places and at different times have shown wild variations and 

confounded modeling and forecasting efforts. Our new mathematical model can help to 

explain these variations. Some solutions of our model are non-standard but realistic. For 

example, we find an epidemic curve where daily cases remain on a plateau for a long time 

before suddenly exploding into a wave, despite interventions remaining constant 

throughout. We also find solutions showing that a specific intervention, for example 

capacity reduction at public gatherings, is very effective if implemented early on in a wave 

but useless if implemented a little later. Our proposed early warning indicator can be a 

game-changer for epidemic forecasting and model-based intervention strategies. Current 

forecasting algorithms have the weakest performance at the inflection points where there 

is an abrupt change in trend in the daily infection rates. The early warning indicator can 

give us advance notice of an approaching inflection point, and enable the authorities to 

take preventive measures before a wave actually arrives. Our results indicate that close 

communication between contact tracing personnel and public health authorities can 

achieve synergistic mitigation of the pandemic. 

---- o ---- o ---- o ----      ---- o ---- o ---- o ---- 
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INTRODUCTION 

§1. Background. The dynamics of COVID-19 trajectories in different countries 

have shown features which are unexpected from a classical epidemiological viewpoint. 

“Plateaus” or extended periods of low and nearly constant daily case rate have been seen 

for example in USA (June 2021), UK (April to May 2021), India (January to March 2021), 

Australia (November 2020 to June 2021) Canada (June to August 2020), Germany (May 

to August 2020), Uruguay (March to November 2020) and Taiwan (March 2020 to April 

2021). In each case, the quiescent period was shattered by a sudden wave; in at least some 

instances, for example India and Taiwan, non-pharmaceutical interventions (NPI) had 

been relaxed long before the wave arose and there was no change in public health policy 

immediately preceding the wave. In UK, a wave ostensibly driven by the extreme 

transmissibility of the B1.617.2 (“delta”) variant began in late May 2021; despite this, all 

restrictions were relaxed on 19 July 2021, after which the case counts went down. A senior 

scientist with huge COVID-19 modeling experience admitted to being flummoxed by this 

development [1]. In India also, following the horrific second wave, B1.617.2 (the 

dominant strain) currently remains under control. In USA however, the cases have been 

following a “roller-coaster” trend, which has left epidemiologists confused [2,3]. In the 

past two weeks, waves began again in many European countries, leading to reimposition 

of social restrictions after many months. The prevalence of different mutants with time in 

USA [4] and India [5] is also interesting. In both these countries, B1.617.2 has become 

dominant during the most recent wave. In each case however, wildtype B1 (usually treated 

as “other”) has clung to a steady, small but non-zero fraction of total infections while the 

apparently more transmissible [6] B1.1.7 (“alpha”) variant has been decimated to nearly 

zero prevalence. 

Mathematical models for COVID-19 spread are of several types, the two most widely used 

being compartmental or lumped parameter models [7-13] and agent-based models [14-19]. 

So far, no compartmental model has succeeded in explaining any of the above ‘anomalies’. 

While agent-based models are in theory capable of generating or predicting any epidemic 

trajectory, a convincing, comprehensive explanation of the counter-intuitive disease 

transmission patterns mentioned above remains difficult to find. A handful of modeling 

studies so far [20-23] have found the plateau as a non-marginal solution, without 

accounting for a sudden wave (a rebuttal [24] exists for one of these analyses). Another 

few studies [25-27] have found the sudden waves. In the first of these, the successive waves 

are progressively smaller in size, so its real world accuracy is yet to be explored. The 

second relies on certain ansatzes. The third is the most realistic and agrees well with many 

of our findings, but it does not feature a plateau. Finally, there are some network models 

of generic epidemics [28-31], which are yet to achieve significant success with COVID-19.  

Since a sudden wave can have disastrous consequences for healthcare systems, the 

question arises as to whether it can be predicted in advance. Drawing reference to the 

critical slowing down phenomenon [32], Dablander et. al. [33] have presented a detailed 

discussion on this point. These authors consider a compartmental model with time-

dependent parameters and show that many commonly proposed indicators actually 



4 
 

decrease rather than increasing before a wave, and are hence useless. This issue has been 

further highlighted in a recent meta-analysis [34] of the performance of various COVID-

19 forecasting algorithms in Germany and Poland. This analysis found that the maximum 

prediction error occurred at the inflection points where there was a change in trend in daily 

case rates i.e. a transition from plateau to wave or from increasing to decreasing. 

Ironically, from the public health perspective, it is these very points which are of the 

greatest significance.  

In a recent work, published as Ref. [35], we have proposed a new infectious disease 

dynamical model called cluster seeding and transmission (CST) model. The underlying 

principle of this model is that human interaction is not homogeneous but heterogeneous – 

in particular, unmasked interactions at little or no separation, which are most liable to 

spread COVID-19, remain primarily confined within small and closed groups of people 

called clusters. Reference [35] can account for the plateau solution as well as a sudden 

transition to wave, but beyond that, its descriptive power is still limited. Here we have 

added contact tracing to this model, as described in Methods later in the Article. We now 

demonstrate that with this addition, the CST model can explain all the anomalies 

mentioned above as well as provide a potential early warning indicator. 

---- o ---- 

 

RESULTS AND DISCUSSION 

§2. Complex effects in the model. Two preliminary considerations : we assume 

(a) no reinfection and (b) no vaccination. A detailed analysis of temporary immunity as 

well as vaccination is appropriate for a future, separate study; a very approximate estimate 

of the consequences of vaccination can be obtained simply by considering a fraction 

(vaccinated percentage times vaccine efficacy) of the population to be pre-immune. 

In CST model, a person’s cluster consists of close contacts such as workplace colleagues 

with whom s/he regularly participates in potentially risky activities such as going to the 

movies and dining outdoors. Reference [35] has identified that socializing external to 

cluster (SEC) events like wedding and birthday parties, where people intentionally mix 

outside their cluster, are very important transmission venues (these events are conceptually 

similar to the transient simplices of Ref. [36] although the underlying network structures 

are different in the two models). The number nS of people participating daily in SEC events 

is a fundamental parameter in the model. Reference [35] has shown that SEC events, while 

adding a small contribution to the population-averaged contact rate, can make a gigantic 

contribution to the caseload. We have called this the cryptogenic instability, the latter word 

referring to the destabilization of the plateau solution into a wave. This is one of the four 

non-classical effects present in our model. The other three are the novel results of this 

Article. 

The second effect is critical mass effect. This refers to the fact that, for certain choices of 

parameter value, the disease can simmer for a long time before suddenly exploding into a 
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wave. We show an example trajectory in Fig. 1 below, with nS = 1800 and the other 

parameter values being given in Methods. All simulation results are for a model city of 

population 3,02,400. 

 

Figure 1 : Case trajectories showing the critical mass effect. The numbers of new cases 

emerging per day are shown as grey bars. The symbol ‘k’ denotes thousand. 

 

We highlight that this entire trajectory – with a nearly constant case rate from 40 to 130 

days and a huge wave after 150 days – has been generated with parameters kept invariant 

throughout. 

The third effect is knife-edge effect. This refers to the fact that if we vary one parameter while 

keeping all others fixed, and ask for the cumulative caseload at the end of the outbreak as 

a function of the varying parameter, then we do not see a gradual change from a low to a 

high caseload. Instead, there is a sudden jump from containment (plateau) to herd 

immunity (wave) over a very narrow range of the parameter value – on either side of the 

jump, the caseload remains almost constant as the parameter is varied. In Fig. 2 below, 

we show the final size and total duration of the epidemic obtained by varying nS. The 

eventual cumulative caseload is depicted a blue line attaching to the left hand y-axis and 

the epidemic duration as a green line attaching to the right hand y-axis. We show similar 

plots for variation of other parameters in the Supporting Information (SI). 
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Figure 2 : Cumulative caseload (blue) and duration (green) of the epidemic as nS is varied and 

all other parameters held to their default values. The symbol ‘k’ denotes thousand and ‘L’ 

hundred thousand. 

 

The final effect is hysteresis effect, in which the past behaviour of the epidemic influences its 

present evolution. For example, with other parameters same as in Fig. 1, if the epidemic 

evolution starts with nS = 1500 then we see a plateau while if it starts with nS = 1900 then 

we see a wave (check from Fig. 2 that the knife-edge lies at approximately nS = 1750). 

However, if a wave is already initiated at 1900, then a reduction to 1500 after 100 days 

has no effect on it whatsoever. A much more drastic reduction – to nS = 300 for instance – 

is required to stop the wave in its tracks. Conversely, relaxing a lockdown may or may not 

cause a rebound wave depending on the daily case rate at the time of relaxation. Similarly, 

an augmentation of contact tracing capacity in response to a wave may prove highly 

effective if implemented early enough but much less effective if implemented later. In Fig. 

3 below, we show the time trace for the second of these two situations. The starting nS is 

1900, lockdown is implemented by reduction to 300 and unlock by relaxation to 1500. The 

daily new cases are grey bars as in Fig. 1 and the cumulative caseload is a blue line 

attaching to the right hand y-axis. 
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Figure 3 : Top panel shows the effects of increasing nS from 300 to 1500 on day #200 while 

bottom panel shows the effects of the same change implemented on day #225. In both cases, 

the lockdown is applied on day #100, indicated by the red vertical line. Note that upto day 

#200, both trajectories are identical – they appear different only because of the axis scalings. 

The unlock is indicated by the green vertical line. The symbol ‘k’ denotes thousand and ‘L’ 

hundred thousand. 

 

We show the time traces for the other situations in SI. Figure 3 as well as the 

supplementary figures show that, as in any classical hysteretic system, the epidemic 

trajectory at any instant is influenced not only by the parameter values prevailing at that 

instant but also by the trajectory itself at past times. 

§3. Analysis of the effects. While critical mass effect in the CST model without 

contact tracing has been identified in Ref. [35], the tracing is responsible for enhancing it 

substantially. In the absence of tracing, for the same parameter values we can get either an 

isolated handful of cases (for a small initial condition) or a full-blown wave (for a larger 
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initial condition) but not both in series. With the tracing included however, Fig. 1 shows 

just such a solution, and this is a hallmark of COVID-19 trajectories round the world. We 

can also see that critical mass effect can result in a wave occurring months rather than days 

after a NPI relaxation, when nobody is expecting trouble, as happened in India, Taiwan 

and elsewhere.  

The qualitative reasoning behind the solution of Fig. 1 is as follows. Firstly, we note that 

contact tracing dramatically reduces the number of at large cases. With the tracing 

probabilities set to their Fig. 1 values (see Methods), excluding the chance that a 24-

member cluster is caught at seeding itself, there is a 24 percent probability that the cluster 

develops just one at large case and another 21 percent probability that it develops four at 

large cases. Now, in Fig. 1, the parameter values happen to be chosen in such a way as to 

generate a plateau if the contact tracers can access every emerging symptomatic case (note 

that the ‘if’ condition is not actually satisfied by the situation at hand). After the seeding 

period (first 40 days), the number of fresh cases occurring per day is such as to stretch the 

tracing infrastructure to its limit or very slightly beyond. Thus, for a long time, nearly all 

feasible cases are traced and the plateau continues with a very slight increasing trend. 

Now, this plateau is not perfectly smooth but consists of fluctuations about an almost 

constant envelope. The increasing trend means that, as time goes on, days of locally high 

cases seed more clusters than the tracers can access and isolate. These untraced clusters in 

turn start supplying considerable numbers of at large cases. And now we enter a vicious 

circle, for more at large cases with constant contact tracing capacity means yet more 

untraced clusters and at large cases. This vicious circle manifests as the sudden wave. Thus 

we can say that the emergence of the wave is the result of a feedback process between the 

contact tracing and the case trajectory itself. This mechanism is similar to the one proposed 

in Ref. [27]; in that study however, the trajectory before the sudden wave is also 

exponential growth, just at a slower rate. Critical mass effect is at best a thorn in the side 

and at worst a nemesis of public health planners, since, right until the wave occurs, the 

case counts alone provide scant evidence that it is imminent and that an increase in NPI 

or compliance therewith is urgently called for. 

Like the critical mass effect, knife-edge effect confounds the efforts of epidemic predictors 

and planners. The risk here is that the transition from tractable (plateau) to intractable 

(wave) behaviour is very sharp, and the system response on either side of the knife-edge is 

qualitatively the same. Hence, if a region is operating in plateau mode with a certain level 

of NPI, it is impossible to guess how much further NPI relaxation is possible without the 

plateau being destabilized. Incremental relaxation – a policy used almost worldwide 

during the initial exit from lockdown – will scarcely produce results until the knife-edge is 

hit, when the consequences will suddenly become drastic.  

As an example of hysteresis effect, we consider the state of Maharashtra in India, including 

its two primary case-driver cities Mumbai and Pune. During January and February 2021, 

cases in these cities were constant or decreasing even though NPI were not very stringent. 

When a wave arose in early March, the reproduction number R was relatively low [37] 

and the State Government initially tried a less invasive intervention approach such as 
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imposing night curfews and increasing mask compliance. As per compartmental epidemic 

models, this alone should have worked. If R was below unity in January at a certain level 

of NPI, then reverting to that level of NPI in March should have brought it below unity 

again and stemmed the growth of cases. This however was not what happened – the daily 

case counts grew relentlessly and hospitals became overwhelmed, to the distress of 

authorities and the public alike. Only when a full lockdown was imposed did the numbers 

start going down again. Hysteresis effect can explain this observation completely. The 

public health implication of this effect is that shorter periods of strong interventions are 

superior to longer periods of weaker interventions at combating a rise in cases. 

All of these effects combine together to explain the bewildering variety of COVID-19 

trajectories seen all over the world. Anomalously high case counts, as in USA and Israel, 

might indicate the crossing of a knife-edge during the relaxation process – thereafter, 

hysteresis effect ensures that the trajectories do not respond to mild NPI. Unexpectedly 

low counts, for example in India and UK [1], might indicate operation on the lucky side 

of a knife-edge. Roller-coaster effects, as occurring in USA, might be related to changes in 

SEC events. For example, a rise in cases might cause more people to forgo attendance at 

parties and bashes, and hence automatically bring nS down to a level where cases begin 

falling (see also Ref. [23]). Since the SEC events have a small contribution to total 

interaction and are currently not accorded special status as per public health policy, 

fluctuations in nS will not show up in mobility analyses, and the changes in disease trend 

will appear mystifying.  

The complex effects underlying corona trajectories might also influence analyses of 

transmissibility of mutants. For example, the transmissibility of B1.1.7 variant appears to 

have been overestimated since it was eliminated in competition while B1 survived. 

Dominance of B1.617.2 relative to other variants will also be facilitated if the serial interval 

for this variant is lower than for the other variants, which two studies [38,39] suggest to be 

the case. The epidemic doubling time Td during exponential growth is defined as Td = 

(log 2)Ts / log R where Ts is the serial interval [12]; a smaller Ts results in faster doubling 

at the same R. 

§4. Early warning indicator. So far we have focused on the variability of COVID-

19 trajectories, both in reality and in our model. We now ask, is there method in this 

madness ? That is, we want to know whether everything is upto chance or whether it might 

be possible to accurately perform at least short-term forecasts of COVID-19 trajectories, in 

particular of the sudden waves. Quantitative predictions based on large numbers of 

variables and parameters are at risk of being inaccurate due to incorrect parameter 

estimates. Hence we seek a single, physically significant quantity which might cast insight 

into the COVID-19 dynamics as a whole. Such a quantity can act as an early warning 

indicator.  

To get this quantity, we need to introduce two numbers related to contact tracing. The first 

is nCT, the number of contacts who ought to be traced per day if the tracers operate as per 

their usual protocols. This will be dependent on the number of new cases emerging per 
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day and hence will be a function of time. The second number is CTmax, the maximum 

number of contacts which the city authorities can trace in one day. This will depend on 

the infrastructure and personnel available to the city, and will be more or less constant 

over short periods. Define the capacity ratio ρ as ρ = CTmax/nCT if CTmax < nCT and ρ = 1 

otherwise. Qualitatively, ρ measures the stress on the contact tracing system. When the 

absolute case counts are low, ρ will equal unity but when the counts are high, this will not 

hold true as the tracers will have to let go of some cases due to resource constraints.  

In our analysis we have found that if ρ becomes less than unity during a quiescent phase, 

then there is a very real threat of a wave. While ρ = 1, all feasible contacts are getting 

traced, i.e. the number of potential contacts emerging per day is less than CTmax. This 

automatically puts a cap on the maximum number of daily cases and precludes a wave. 

On the other hand, when ρ decreases below unity, there is a surplus of at large cases which 

initiates the vicious feedback circle between cases and untraced clusters. We expect that, 

during the first few days at least, the surplus will be small – it will take some time for the 

untraced cases to be amplified to a level where the growth becomes uncontained. During 

this time, the actual case counts will remain small but ρ will dip below unity, thus acting 

as an early warning indicator. 

To verify our hypothesis, we perform extensive simulations. As a representative example 

to include here, we consider Fig. 1. In this figure, the parameter value nS = 1800 generated 

a huge wave after a faux plateau; if we reduce nS to 1750 then we get the plateau only 

(again recall the knife-edge from Fig. 2). In Fig. 4 below we show the epidemic history 

during the initial 120 days for these two values of nS. We also show ρ as a blue line 

attaching to the right hand y-axis. 

Indeed, the case trajectories in the two panels look nearly identical. But while ρ for the top 

panel is unity almost throughout, ρ for the bottom panel shows marked deviations which 

increase as time goes on. The bottom panel does show a very slight increasing trend 

superposed on the plateau but this can easily be missed or taken for an unimportant 

fluctuation. The fact that the absolute case counts are higher in the bottom panel than in 

the top is insignificant since a plateau is a plateau, and absolute case counts have no 

meaning. But the trend in ρ in the two plots is very different, and this difference is crucial 

as the subsequent evolution demonstrates (the final case counts in the two situations differ 

by a factor of more than 12).  
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Figure 4 : Case trajectories and capacity ratio as a function of time during the first 120 days 

for two different values of nS. After 120 days, the top panel continues as is while the bottom 

panel is the same as Fig. 1. 

 

In SI, we present many more time traces of ρ in borderline situations, for different NPI 

measures and parameter values. The conclusion which all the plots support is that ρ 

performs well as an early warning indicator in each case. 

§5. Conclusion and policy implications. In our CST model of epidemic 

propagation with contact tracing, we have identified four non-classical effects which can 

help to explain the perplexing variety of COVID-19 trajectories seen worldwide. We have 

also shown that the capacity ratio ρ might act as an early warning indicator of an imminent 

wave. In Methods, we present a detailed discussion of the limitations of the model and 

their consequences. Many of the limitations arise from assumptions needed to make the 

model deterministic rather than fully-agent based. When these assumptions are relaxed, 

the cryptogenic instability, critical mass and hysteresis effects are expected to remain as 
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they are while the transition from containment to herd immunity in the knife-edge effect 

is expected to become more gradual. Despite these limitations, CST model with contact 

tracing appears to be superior to other models at explaining and predicting COVID-19 

epidemiological curves. 

We now briefly discuss the public health policy implications of our work. Policy decisions 

must be formulated on the basis of results which remain qualitatively unaffected by 

changes in parameter values or refinements in the model structure. The first such result is 

that SEC events activate the cryptogenic instability and can cause a high caseload. For this 

reason, size limits on such gatherings must be imposed and enforced. Public health 

messaging may focus on narrowing the scope of one’s social interactions as a substitute to 

reducing their frequency. Testing of asymptomatic persons, an intervention not considered 

here, may turn out to be most effective if implemented on the prospective attendees 

immediately prior to SEC events; we shall analyse this in detail in the future. 

The second robust conclusion is that contact tracing is of great importance in combating 

the spread of COVID-19. To facilitate the contact tracers’ job, people may be encouraged 

to keep private records of every person with whom they have had close, unmasked 

interactions. Then, in case a person turns out corona positive, the entries for the last five 

or seven days in his/her record may be used to quickly access potential contacts and also 

trace the case’s SEC transmissions. Compared with mobile phone-based contact tracing 

methods [40], this technique has two benefits : (a) the electronic methods do not 

differentiate between an interaction which took place with full COVID-appropriate 

behaviour and one which did not, and (b) there is no question of the personal records being 

used for surveillance without one’s knowledge. Two cautionary points regarding an 

effective contact tracing program are given in SI. 

The third conclusion which appears to be robust is that saturation of the contact tracing 

infrastructure indicates the imminent arrival of a wave. When such saturation is observed, 

a rollback of reopening measures should be announced immediately and maintained until 

the strain on the contact tracers is eased. Augmenting the contact tracing capacity by hiring 

professional contact tracers will enable further reopening, and, in concert with 

vaccination, pave the way towards possible elimination of the disease in the longer term. 

We shall consider such phenomena in our future studies. 

---- o ---- o ---- o ----      ---- o ---- o ---- o ---- 
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METHODS 

§6. Cluster seeding and transmission (CST) model – prior work. We first give a 

brief summary of the basic CST model presented in Ref. [35]. An unstated or at best 

understated assumption at the heart of all lumped parameter or compartmental models is 

that of homogeneous mixing – the assumption that any random person has equal 

probability of interacting with, and hence transmitting the virus to, any other random 

person taken from the entire population. In our cluster-based model we have gone with 

the more realistic assumption that a person is more likely (perhaps by order of magnitude) 

to interact with (and consequently infect) family members and friends rather than 

strangers. We have expressed this by dividing the population into clusters or small groups 

of people with dense links among each other and few or no links outside. Intra-cluster 

transmission of virus is certain and rapid. Inter-cluster transmission is rarer and (as per the 

model assumptions) occurs in two ways. These are unintentional cluster transition or UCT 

events which involve accidental transmission in public places, and socializing external to 

cluster or SEC events where people from different clusters intentionally get together. By 

calculating the various transmission probabilities, we have arrived at a computational 

model for the spread of the disease.  

We now give a brief description of CST model. Time is discrete and is measured in days. 

The variables and parameters are as in Table 1 below (this table is adapted from Ref. [35]). 

The default values are those used in Ref. [35] to generate a plateau solution, and carry over 

to this Article with a few exceptions to be mentioned as appropriate. Since we assume 

uniform mixing among clusters (rather than individuals), the domain of validity of the 

model is a city rather than a state or a country. This is important – the model is not 

applicable to a whole state or country at once. To get the curves for such a larger region, 

we must break it up into cities and explicitly account for travel among the cities. This 

restriction on the domain size applies to any model where mixing is heterogeneous – 

homogeneously mixed models allow greater flexibility but at the cost of descriptive and 

predictive accuracy, as discussed in §1. 
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Variable Significance 

yi Cumulative number of socially active cases upto and excluding day #i 

Δyi Number of new socially active cases cropping up on day #i 

zi Cumulative number of insusceptible clusters upto and excluding day #i 

Δzi Number of new clusters turning insusceptible on day #i 

fi Cumulative number of cautious household cases upto and excluding day #i 

Δfi Number of new cautious household cases cropping up on day #i 

 

Parameter Significance Default value 

N Total population 3,02,400 

h Household size 3 

N1 Socially active population 1,00,800 

NC Number of clusters 4200 

s Size of the cluster 24 

— Cluster sequence [1; 3; 6; 7; 5; 1] 

Ts Serial interval 5 days 

nU 

Number of people 

participating daily in UCT 

events 

10,000 

PU 
Probability of transmission 

at a UCT event 
0·15 

nS 

Number of people 

participating daily in SEC 

events 

— 

mS 
Number of people infected 

by one case at a SEC event 
2 

— 

Time between exposure 

and start of transmissibility 

for all cases 

5 days 

— 

Duration for which all 

cases transmit the disease 

to others 

3 days 

Table 1 : Variables and parameters in the basic CST model. Parts of this Table are reproduced 

verbatim from Ref. [35] (our own work). We do not assign a default value to nS (it was zero in 

Ref. [35]) since it is varied continually for the simulation results. 

 

We count a person as a case on the day s/he first turns transmissible. Considering a city 

of total N people, we have partioned them into N1 ‘socially active’ people who can contract 

the disease on their own and N − N1 ‘householders’ who can contract the disease only from 

a socially active individual. We have then divided the N1 active people into NC clusters of 

equal size s. When a cluster is seeded, i.e. when the first member of a cluster with all 

susceptible persons is exposed to an infective dose of the pathogen, we assume that cases 
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crop up in the cluster over the next few days following a fixed, definite sequence. The jth 

element of this sequence denotes the number of new cases cropping up in the cluster j serial 

intervals following seeding (for this purpose, the serial interval must be taken as an integer 

number of days). This sequence approximately captures the reproduction number R0 of 

the disease (R is the number of secondary transmissions from one infected individual, and 

R0 is its initial value when everyone is susceptible) and the serial interval (the time between 

primary and secondary case). The last two rows of Table 1 indicate our assumption that 

all cases turn transmissible 5 days following exposure and remain transmissible and at 

large for 3 days (after this duration, asymptomatic cases recover while symptomatic ones 

show their symptoms and go into quarantine). We shall in general continue using the same 

values here. For more details of the prior work, we must request that you consult Ref. [35]; 

we now proceed to the novel contributions of the present Article. 

§7. Implementation of contact tracing. Contact tracing refers to the process in 

which, when a case is detected, the people with whom s/he has interacted recently are 

identified and recommended to isolate for a few days so as to prevent further spread of 

infection. Here we make two fundamental assumptions regarding the tracing process : 

• There is forward contact tracing only, starting from symptomatic cases. This means 

that when a symptomatic case with unknown source of exposure tests positive, the 

authorities attempt to identify all of his/her potential secondary cases, but do not 

attempt to identify the source of exposure and other secondary contacts thereof. 

We also assume that there is no random testing of asymptomatic persons. 

• The process timings involved are such as to ensure that cases who are successfully 

caught by the contact tracers are sent into quarantine during their non-transmissible 

incubation period, i.e. traced cases transmit the disease to no one else. 

A toy example will help to clarify the implications of the above assumptions. For this 

example we ignore the cluster structure of the population. Let us say Alfa is an 

asymptomatic case who transmits the virus to Bravo and Charlie on day #0 (as mentioned 

in Ref. [35], we use the ICAO letter codenames to denote random persons – overlap with 

names of viral variants is purely accidental). On day #5, both of them turn transmissible 

– Bravo transmits to Delta, and Charlie to Echo and Foxtrot, all on the same day. Bravo 

remains asymptomatic while on day #8, Charlie turns symptomatic, reports to the 

authorities and tests positive. By the first assumption, Echo and Foxtrot are rounded up 

by the contract tracers but there is no attempt to track down Alfa. As a result of this lapse 

Bravo remains undetected as well, and so does Delta. Charlie’s secondary cases Echo and 

Foxtrot turn transmissible on day #10; the second assumption implies that they are 

successfully captured within day #9. This discussion might appear a little unwieldy so we 

show the transmission sequence in a schematic form in Fig. 5 below. 
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Figure 5 : Timeline of different cases in the hypothetical example to demonstrate the contact 

tracing assumptions. Squares denote individual persons. Yellow means exposed but not 

transmissible, red means transmissible while green means recovered. The grey vertical lines 

indicate transition of one person from one state to another while red horizontal lines denote 

transmission of the disease from person to person. The 5- and 3-day intervals between 

exposure and infectiousness, and infectiousness and recovery are consistent with the basic 

CST model assumptions. Note how the two assumptions regarding contact tracing result in 

capture of Echo and Foxtrot before they turn transmissible while failing to trace the Bravo-

Delta branch of the transmission. 

 

Thus we can see that the two assumptions introduce errors in opposite senses. A more 

sophisticated contact tracing system can achieve backward tracing (catching Alfa from 

Charlie and hence Bravo and Delta from Alfa) while a slowly functioning system with 

delays in testing etc can result in secondary cases not being caught before starting spread. 

The second assumption allows us to define exactly two classes of cases – at large cases, 

who spend three full days spreading virus just as in Ref. [35] and quarantined cases who 

spend zero days infecting others. We now account for the presence of social clusters in a 

realistic manner. Let P0 be the probability that a random case is symptomatic, and Q0 = 

1 − P0 the probability that s/he is asymptomatic. We assume that when a symptomatic case 

reports to the authorities, the entire cluster to which s/he belongs is successfully identified 

with probability P1 and missed with probability 1 − P1. Further, UCT and SEC trans-

missions which this case has caused are identified with probabilities P2 and P3 respectively.  

We use an example rather than a general theoretical discussion to understand how contact 

tracing will work on a cluster, noting that the example is very easy to generalize. For this 

example, we use the cluster sequence [1; 3; 6; 8; 5; 1] which also features in very many of 

the simulation runs. This sequence is adapted from Table 1, with the reason for the change 

coming below. All clusters are first seeded via UCT or SEC events; again for definiteness, 
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let us focus on the former. Let the example cluster be named Team, let it consist of persons 

Alfa through Xray (total 24) and let the at large case Yankee be the one who exposes Alfa 

to the pathogen in a UCT event. In the absence of contact tracing, the cluster sequence 

implies that 

• Alfa (1 person) is exposed by Yankee on day #0 and turns into a case on day #5 

• Bravo, Charlie and Delta (3 more persons) are exposed by Alfa and turn into cases 

on day #10 

• Echo through Juliett (6 more persons) are exposed by one or more of Bravo through 

Delta and turn into cases on day #15 

• Kilo through Romeo (8 more persons) are exposed by one or more of Echo through 

Juliett and turn into cases on day #20 

• Sierra through Whiskey (5 more persons) are exposed by one or more of Kilo 

through Romeo and turn into cases on day #25 

• Xray (1 more person) is exposed by one or more of Sierra through Whiskey and 

turns into a case on day #30 

Now incorporate contract tracing on Team. There is a probability P0 that Yankee is 

symptomatic and Q0 that he is asymptomatic. In the latter case, there is no hope of catching 

Alfa; in the former case, there is a probability P2 that Alfa is identified by the contact tracers 

and sent into quarantine. If this happens, then the only case in Team is Alfa, who is 

quarantined at the get-go. In such a situation, we classify Team as a cluster of Type 1. The 

probability that Team, and by extension any other cluster, is of Type 1 is thus P0P2. 

If Yankee is asymptomatic (probability 1 − P0) or if he is symptomatic (P0) but the tracers 

fail to identify Alfa as his secondary UCT case (1 − P2), then Alfa becomes an at large case. 

The probability of this happening is 1 − P0 + P0 (1 − P2) which is 1 − P0P2. Then, Alfa 

transmits the virus to Bravo, Charlie and Delta and also participates in UCT and SEC 

events. Now, consider the case that Alfa is symptomatic (P0). If yes, the contact tracers get 

to work and, with probability P1, capture the entire cluster Team including Bravo, Charlie 

and Delta. Assume the complement 1 − P1 to denote a tracing error or roadblock where the 

opportunity to catch Team is irreversibly lost. The tracers also capture Alfa’s UCT and 

SEC transmissions with probabilities P2 and P3. Captures of UCT and SEC transmissions 

by members of Team are however accounted for while implementing contact tracing on 

the secondary clusters, just as we have factored in Yankee while doing the calculation for 

Team. Hence, for analysing Team, they do not require our further consideration. Bravo, 

Charlie and Delta contract the infection in quarantine and further spread of the disease 

within Team is halted. In this situation, we call Team a cluster of Type 2. The probability 

of this occurring is (1 − P0P2) P0P1.  

If Alfa is asymptomatic however (Q0), then Bravo through Delta perforce become at large 

cases, transmitting the virus to the next level in the cluster i.e. to Echo through Juliett (and 

also participating in UCT and SEC). Any and all of Bravo through Delta might be 

symptomatic or asymptomatic – if at least one is symptomatic (1 − Q0
3, the complement of 
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the probability that all three are asymptomatic) then Team is grounded at this stage with 

probability P1. Echo through Juliett become quarantined cases and we classify Team as 

Type 3. The probability of this occurring is (1 − P0P2) Q0 (1 − Q0
3) P1.  

Similarly, if everyone upto Delta is asymptomatic (Q0
4) but at least one among Echo 

through Juliett is symptomatic (1 − Q0
6), then all 10 of these become at large cases, while 

Kilo through Romeo are exposed but quarantined before they turn infectious. We call 

Team a cluster of Type 4, and the probability of its occurrence is (1 − P0P2) Q0
4

 (1 − Q0
6) P1. 

The probability that everyone from Alfa to Juliett is asymptomatic is minuscule and we 

take it as zero. Thus, we define the Type 5 cluster to be the one where contact tracing has 

no effect at all i.e. all cases remain at large. The probability of its occurrence is 1 minus all 

the above probabilities put together. A picture might well be worth the last 500 words, so 

we present the probability tree below as Fig. 6 and also the case burdens associated with 

the various cluster types as Table 2. In a similar manner we can account for the 

probabilities of occurrence of the five types of clusters via SEC events. For this, we replace 

P2 by P3 in the expressions obtained above. 
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Figure 6 : Probability tree showing how Team can end up being a cluster of Types 1 through 

5. “Asymp” and “symp” stand for asymptomatic and symptomatic, “loose” means at large and 

“gnd” or grounded denotes quarantined. “Cluster lost” means that the tracers fail to track down 

Team i.e. it becomes a cluster of Type 5. The probabilities associated with each event are 

shown alongside the vertical arrows leading to the event; Qn is shorthand for 1 − Pn and 

certainties are marked as 1 for consistency. If deriving (1) from this diagram, note that Q0 + 

P0Q2 = 1 − P0P2. 
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Type 1 2 3 4 5 

At large 0 1 4 10 24 

Quarantined 1 3 6 8 0 

Table 2 : Total numbers of at large and quarantined cases arising from clusters of the five 

fundamental types. 

 

Given these probabilities, we now describe the modifications which must be made to the 

computational algorithm outlined in Ref. [35]. Firstly, we define extra variables xi and Δxi, 

the cumulative respectively daily counts of at large cases on day #i and qi and Δqi, the same 

for quarantined cases. The total numbers of socially active cases become yi = xi + qi and 

Δyi = Δxi + Δqi. The Subroutine roundoff in the algorithm of Ref. [35], which replaces a 

fraction by its nearest integer and carries over the error, remains as it is. In the main 

routine, we redefine the total number of at large cases α present on day #i to be Δxi−1 + 

Δxi−2 + Δxi−3. The calculation of expectation number EU of susceptible clusters seeded via 

UCT on day #i remains unchanged from Ref. [35]. This is because contact tracing does 

not affect the parameters other than α which go into determining EU. Then, we introduce 

the probabilities obtained above for the seeded clusters belonging to Types 1 through 5. 

These probabilities, in summary form, are 

 0 2
(1)

U
P P P=    , (1a) 

 ( )0 2 0 1
(2) 1

U
P P P P P= −    , (1b) 

 ( ) ( )30 2 0 0 1
(3) 1 1

U
P P P Q Q P= − −    , (1c) 

 ( ) ( )4 6

0 2 0 0 1
(4) 1 1

U
P P P Q Q P= − −    , (1d) 

 (5) 1 (1) (2) (3) (4)
U U U U U
P P P P P= − − − −    . (1e) 

Then, the expectation number of susceptible clusters of type j seeded during UCT events 

becomes EU(j) = EUPU(j). 

Analogously we calculate the expectation number ES(j) of susceptible clusters of various 

types seeded on day #i during SEC events, by replacing P2 with P3 in the expressions 

above. Adding the two together gives us the expectation numbers E(j) of the five types of 

clusters seeded on day #i. The sum E = E(1) + E(2) + E(3) + E(4) + E(5) gives the total 

expectation number of clusters seeded on this day. In Ref. [35] we straightaway rounded 

this off to get the actual (integer) number of clusters seeded. Here however, there is one 

more thing to take care of, which is the maximum contact tracing capacity CTmax. 

Identification and isolation of a cluster entails tracking down 24 people and issuing 

quarantine recommendations to all of them. This is time- and resource-consuming work, 

and needs dedicated personnel. It is reasonable to expect that the city will have an upper 

limit on the number of contact tracers and hence a ceiling on the number of people who 

can be tracked down in a day. We call this ceiling CTmax. Now we need an estimate of the 

number of people required to be traced every day. Generating a cluster of Types 2 through 



21 
 

4 requires identifying 24 people; the count required to generate a cluster of Type 1 is harder 

to calculate since it involves identifying UCT and SEC transmissions rather than cluster 

isolation. Nevertheless, for calculational convenience, we will assume that this process 

involves tracing 24 people also. Generating a Type 5 cluster of course does not require any 

contact tracing at all. Putting this together, the number of people required to be traced on 

day #i is 

 ( ) ( )24 (1) (2) (3) (4) 24 (5)
CT
n E E E E E E= + + + = −    . (2) 

If nCT ≤ CTmax, then the calculated E(j)’s for day #i are feasible to generate. If this inequality 

is violated however, then the calculated E(j)’s are impossible. 

In this case, we define the capacity ratio (the early warning indicator) ρ = CTmax/nCT and 

rescale the expectation numbers of contact traced clusters by ρ i.e. we replace E(j) = ρE(j) 

for j goes from 1 through 4. This rescaling ensures that the total number of contact tracings 

made on day #i becomes equal to CTmax instead of exceeding it, while the relative 

proportions of Types 1 through 4 clusters remain unchanged. To make the rescaling 

consistent, we define ρ = 1 in the case that nCT ≤ CTmax. The total number E of clusters 

seeded on day #i cannot depend on the contact tracers’ ability to find these clusters, since 

the finding happens only after day #i. Hence E itself is independent of ρ and the adjusted 

E(5) is calculated as E less the rescaled E(1) through E(4). Only now do we perform the 

roundoff to calculate the integer numbers Δzi
(j) of susceptible clusters of type j seeded on 

day #i. 

Another difference from Ref. [35] occurs in the removal of immune clusters. In Ref. [35] 

we treated entire clusters as susceptible or immune – this was essential to prevent over- or 

undercounting while ensuring tractability of the mathematical expressions. Here, different 

types of clusters generate different numbers of susceptible and immune people at the end 

of the cluster-level outbreak (Type 1 has 23 susceptible and 1 immune, Type 2 has 20 

susceptible and 4 immune etc), and treating such clusters as a whole as immune (or 

susceptible) will lead to unacceptable levels of error. To get around this, we use an 

approximation scheme where the error involved is much less. We let wi and Δwi 

(equivalent of zi and Δzi of Ref. [35]) denote the effective numbers of immune clusters. 

Whenever a Type 5 cluster is generated, we increase Δwi by one, just as in Ref. [35]. For 

the other cluster types, whenever total 24 additional immune people are generated, we 

increase Δwi by one. This scheme ensures that the infection can mathematically spread to 

the entire population, neither stopping short nor overshooting. Here, we explain why we 

opted for [1; 3; 6; 8; 5; 1] as the cluster sequence instead of [1; 3; 6; 7; 5; 1] of Ref. [35]. 

This is because, with this sequence, a Type 5 cluster infects everybody inside and is 

consistent with our heuristic susceptible cluster calculation scheme, whereas the one 

remaining susceptible person with the original sequence causes a needless headache at this 

step.  

A final point of difference from Ref. [35] occurs in the treatment of the household cases. 

In Ref. [35], all socially active cases generate two additional household cases. Here, all at 
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large cases generate the two additional household cases but quarantined cases do not 

spawn this extra caseload. 

§8. Computer algorithm. We now list the additional variables and parameters 

present in the model with respect to Ref. [35], and give the algorithm for calculating the 

case trajectories. In the algorithm, we condense those parts which have already appeared 

in the algorithm of Ref. [35]. 

Variable Significance 

xi, Δxi 
Cumulative respectively daily counts of at large cases 

cropping up on day #i 

qi, Δqi 
Cumulative respectively daily counts of quarantined 

cases cropping up on day #i 

wi, Δwi 

Cumulative respectively daily counts of effectively 

immunized clusters cropping up on day #i. Replaces zi 

and Δzi of Ref. [35]. 

 

Parameter Significance Default value 

P0 
Probability of random case 

being symptomatic 
0·5 

P1 

Probability of grounding 

cluster upon finding a 

symptomatic case 

0·8 

P2 

Probability of identifying a 

symptomatic case’s 

secondary UCT 

transmissions 

0 

P3 

Probability of identifying a 

symptomatic case’s 

secondary SEC 

transmissions 

0·2 

CTmax 

The maximum number of 

people whom the contact 

tracers can track down 

every day 

50 

Table 3 : New variables and parameters arising when contact tracing is added to the basic 

CST model. 

 

We have chosen a relatively high default value for P1 since clusters are composed of close 

contacts and these are relatively easy to trace. We have gone with zero as the default for 

P2 since UCT events like transmission on board buses and inside marketplaces are almost 

impossible to identify in practice. For P3 we have gone with a low default value since SEC 
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transmissions, for example at wedding and birthday parties, are harder to identify than 

intra-cluster transmissions but easier than transmissions in random public places. 

We now give the algorithm itself. The algorithm is schematic and is not cast in any 

particular language. Our code is written in Matlab and is being included in SI. 

Subroutine roundoff 
Carry over from Ref. [35] – round to nearest integer and retain error 

Main Routine 
Starting steps 

Step 1 Set parameters, initialize all variables with zero values 
Step 2 for j goes from 1 to 5 

     Calculate PU(j) 
     Calculate PS(j) 
end 

Step 3 Set initial conditions to seed the system 
Primary loop over i 

Step 1 Define α = Δxi-1+Δxi-2+Δxi-3 
    Break loop if α = 0 beyond the seeding phase 

Step 2 Calculate EU as in Ref. [35], use w in place of z 
Step 3 for j goes from 1 to 5 

     Calculate EU(j) = PU(j)EU 
end 

Step 4 Calculate ES as in Ref. [35], use w in place of z 
Step 5 for j goes from 1 to 5 

    Calculate ES(j) = PS(j)ES(j) 
end 

Step 6 for j goes from 1 to 5 
    Calculate E(j) = EU(j)+ES(j) 
end 
Define E = E(1)+E(2)+E(3)+E(4)+E(5) 

Step 7 Calculate nCT = 24(E-E(5)) 
Step 8 if nCT>CTmax 

    Define ρ = CTmax/nCT 
else 
    Define ρ = 1 
end 
for j goes from 1 to 4 
    Set E(j) = ρE(j) 
end 
Set E(5) = E-E(1)-E(2)-E(3)-E(4) 

Step 9 for j goes from 1 to 5 
    Define Δzi(j) = roundoff(E(j)) 
end 

contd. 
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Step 10 Set 
    Δxi+5 = Δxi+5+1×(Δzi(2)+Δzi(3)+Δzi(4)+Δzi(5)) 
    Δxi+10 = Δxi+10+3×(Δzi(3)+Δzi(4)+Δzi(5)) 
    Δxi+15 = Δxi+15+6×(Δzi(4)+Δzi(5)) 
    Δxi+20 = Δxi+20+8×Δzi(5) 
    Δxi+25 = Δxi+25+5×Δzi(5) 
    Δxi+30 = Δxi+30+1×Δzi(5) 

Step 11 Set 
    Δqi+5 = Δqi+5+1×Δzi(1) 
    Δqi+10 = Δqi+10+3×Δzi(2) 
    Δqi+15 = Δqi+15+6×Δzi(3) 
    Δqi+20 = Δqi+20+8×Δzi(4) 

Step 12 Define Δyi = Δxi+Δqi     
Step 13 Define 

    imm = (Δzi(1)+4Δzi(2)+10Δzi(3)+18Δzi(4)) 
    s1 = imm mod 24 
    Δwi = Δzi(5)+(imm-s1)/24 
    s2 = s2+s1 
    if s2≥24 
        s2 = s2-24 
        Δwi = Δwi+1 
    end 

Step 14 Set 
    xi+1 = xi+Δxi 
    qi+1 = qi+Δqi 
    yi+1 = yi+Δyi 
    wi+1 = wi+Δwi 

Final steps 
Step 1 Define 

    Δfi+5 = 2Δxi 
    fi+5 = 2xi     

Step 2 Prepare relevant plots 

Algorithm 1 : Schematic form of the routine used to compute case trajectories. imm in Step 13 

of the primary loop counts immune population. Steps 10, 11 and 13 make explicit reference to 

the sequence [1; 3; 6; 8; 5; 1] but that is only for readability – it is trivial to replace them by 

v(1), v(2) etc where v denotes the cluster vector. Note that the numbers 1, 4, 10 and 18 in Step 

13 are v(1), v(1)+v(2), etc. 

 

As in Ref. [35], we introduce the parameter kmax for convenience and set its value to 80. In 

all simulation results, we use the initial condition that eight clusters are seeded on the first 

day, after which the disease evolves on its own. 
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§9. Limitations of the model and their consequences. Most of the limitations of the 

model have already been mentioned in Ref. [35]. They are 

• Assumption of constant cluster size 

• Assumption of constant cluster sequence 

• Use of roundoff 

• Decoupling of households from clusters 

• Ignoring the possibility of one person’s belonging to multiple clusters 

Reference [35] also discusses the ways of circumventing these assumptions – in short, we 

have to convert the deterministic model to a fully agent-based model. The additional part 

implementing contact tracing contains two assumptions which we have already discussed 

in §7. There is an approximation in the calculation of ρ since we assume that all the cluster 

members are being traced on the same day as the case is found. In reality, the most 

immediate contacts might be identified first and the more distant ones later, easing the 

tracers’ job. On the average however, the total number of contacts needing to be traced 

over say a week or ten days will remain unchanged. Another approximation arises in our 

counting of immune clusters wi and Δwi. In this case, since our scheme preserves the total 

susceptible and immune populations at any time, errors will tend to average out. 

Once again, converting from the deterministic CST to a fully agent-based model will 

obviate the need for most or all of these assumptions. A more interesting question is : how 

might our assumptions influence the model results ? As a first test, we have varied the 

parameter which might be the most restrictive, which is the cluster sequence. Instead of 

[1; 3; 6; 8; 5; 1], we have now considered the sequence [1; 4; 13; 6]. This describes much 

faster intra-cluster transmission, corresponding to a more transmissible mutant strain. 

Concomitantly we have also increased the values of PU from 0·15 to 0·25 and mS from 2 to 

3·5. Note that these values are hypothetical and we neither state nor intend to suggest that 

the percentage increases in transmissibility parameters are actually representative of 

B1.617.2 or any other actual SARS-CoV-2 variant. In this case, we have run extensive 

simulations and found all the effects mentioned in §2. The parameter values at which the 

different behaviours occur are of course different, but that apart everything else is the same. 

We dispense with another plethora of figures, since the code is already available in full in 

SI. 

A realistic society is expected to have a distribution of cluster sizes and sequences as well 

as transmission parameters, and not just constant values of all of them. At one end of the 

spectrum, college students for example will tend to have large clusters, high intra-cluster 

interaction resulting in a rapid sequence, as well as higher values of PU and mS arising from 

their active social lives (and possibly lack of caution). At the other end, retirees are 

expected to have small clusters, a less sharp cluster sequence and low PU and mS due to 

their relatively limited social lives as well as justified fears about the consequences of 

contracting the disease. In such a society, we expect some of the special effects to remain 

more or less as is and others to be altered.  
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The critical mass effect ought to be robust because of its mechanism of action. With 

parameters for most or all sub-populations in a dangerous region, when the college 

students are operating at the borderline of tracing capacity, cases in that sub-population 

will plateau; cases in less contagious sub-populations will also plateau or decay (recall that 

in CST model, the plateau is manifest in large regions of the parameter space). The 

students will be the first to cross the contact tracing threshold and activate the instability; 

cases arising there will then induce cases in the other sub-populations and cause them to 

follow suit as well. On the other hand, a distribution of cluster size and contagiousness 

will certainly blunt the edge of the knife. When an NPI is progressively relaxed, the critical 

parameter value for the college students will be lower than that for the retirees, and 

crossing that first cutoff alone will not initiate a wave in the whole population. For a mass 

transition from plateau to wave, we shall have to effect a larger change in parameters than 

Fig. 2 would imply. Like critical mass effect, hysteresis effect is again expected to be robust 

in a population with a distribution of cluster sizes and parameters, since it will apply 

individually to the various sub-populations. As we have mentioned in §3, demonstrations 

of the critical mass and hysteresis effects have indeed occurred many times in different 

parts of the globe. Finally, we mention that the consequences of errors arising from 

approximations in our implementation of the model (for instance, use of the parameter 

kmax) will be no different from those of approximations in the model itself. We believe that 

the undulation in caseload in Fig. 2 as nS is increased beyond the knife-edge is an example 

of this kind of error – without kmax or roundoff for instance, the curve here would likely 

have been monotonic, which is more realistic.  

A further limitation exists with respect to data fits. Here we have not presented any fits or 

predictions of COVID-19 curves for actual regions. This is because the model has a lot of 

free parameters whose real-world values we do not know, key among them being the 

cluster size and sequence, nU, PU, nS and mS. Without further information, good fits to data 

shall become generated in many regions of the parameter space. To make the fit 

meaningful, we shall have to obtain estimates of as many of the parameters as possible 

from sources external to the COVID-19 trajectories themselves. In Ref. [35] we have 

argued that, since the bulk of the parameters relate to people’s interaction, the contact 

tracers’ logs provide an ideal source from which to estimate their values. Unfortunately, 

we currently lack access to such logs and are not aware of even one repository where they 

are publicly available. Hence, for the timebeing we stick to universal, parameter-

independent results and leave region-specific fits and predictions for a future study. 

---- o ---- 
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§S1. Demonstrations of the knife-edge effect. In Fig. 2 of the Article proper we 

presented the knife-edge effect for variation of nS, with all other parameters being held to 

their default values as mentioned in §7-8. Here we show the same thing for variation of P1 

and CTmax. As in Fig. 2, the epidemic final size is a blue line attaching to the left hand y-

axis while the duration is a green line attaching to the right hand y-axis. Recall that the 

total population of the city is 3,02,400. 



Figure S1 : Cumulative caseload (blue) and duration (green) of the epidemic as the labelled 

parameter is varied and all other parameters held to their default values. The symbol ‘k’ 

denotes thousand and ‘L’ hundred thousand. 

 

In §9 of the Article proper we have mentioned the undulations in Fig. 2 as the likely result 

of computational inaccuracy. The undulations in case count in Fig. S1-bot to the left of 

CTmax = 320 are very likely a similar phenomenon. The perfectly flat line to the right of this 

CTmax is not an error however since for all CTmax above this value, every contact who can 

be traced is traced and the epidemic evolution remains unchanged. 

§S2. Demonstrations of the hysteresis effect. We include here the simulation 

plots for the situations mentioned in §2 of the Article proper but not explicitly shown. For 

the first situation we start from nS = 1900 and implement stronger NPI by reducing nS on 

day #100. Noting from Fig. 2 that the knife-edge lies between 1750 and 1800, we consider 

a mild reduction to 1500, as well as a much stronger reduction to 300. As in Fig. 3 of the 



Article proper, the daily new cases are grey bars attaching to the left hand y-axis while the 

cumulative cases are a blue line attaching to the right hand y-axis. 

Figure S2 : Top panel shows the effects of reducing nS from 1900 to 1500 while bottom panel 

shows the effects of reducing it to 300. In both cases, the intervention is applied at 100 days, 

indicated by the red vertical line. The symbol ‘k’ denotes thousand and ‘L’ hundred thousand. 

 

Even though nS = 1500 is acceptable if implemented from the get-go, it fails miserably when 

applied partway into the wave. This is qualitatively similar to what happened in 

Maharashtra, as discussed in the Article proper. 

In the second situation we initiate the wave with nS = 1900 and implement an increase in 

CTmax from 50 to 400 at 120 respectively 100 days. 



 

Figure S3 : Effect of increasing CTmax from 50 to 400 at day #120 (top panel) and day #100 

(bottom panel). In both cases the intervention is depicted as a red vertical line. The symbol ‘k’ 

denotes thousand and ‘L’ hundred thousand. 

 

These plots show that, like the knife-edge effect, hysteresis effect also occurs for variation 

of different parameters. 

§S3. Discussion of ρ as an early warning indicator. In this Section we present 

plots showing the correlation between a drop in ρ and an imminent wave for a wide variety 

of situations. In Fig. 4 of the Article proper we have shown this for two contrasting 

situations taken from either side of a knife-edge. Here we consider the situations which 

demonstrated the hysteresis effect, and analyse whether ρ can tell us in advance if the 

intervention/relaxation has been well-timed or mistimed. First, we take Fig. 3 of the 

Article proper, zooming in to focus on the most relevant part (near the unlock). In this 

Figure and the ones that follow, we show ρ as a blue line attaching to the right hand y-

axis. 



 

Figure S4 : Case trajectories and capacity ratio as function of time for an increase in nS from 

300 to 1500 being applied at day #225 (top panel) and day #200 (bottom panel). The point of 

relaxation of the intervention is shown as a green vertical line. 

 

Next we consider the two situations of Fig. S2. 



 

Figure S5 : Case trajectories and capacity ratio as function of time for a reduction in nS from 

1900 to 1500 (top panel) and 300 (bottom panel) being applied at day #100. The point of 

application of the intervention is shown as a red vertical line. The symbol ‘k’ denotes thousand. 

 

Next, the two situations of Fig. S3.  



 

Figure S6 : Case trajectories and capacity ratio as function of time for an increase in CTmax 

from 50 to 400 being applied at day #100 (top panel) and day #120 (bottom panel). The point 

of application of the intervention is shown as a red vertical line. This line is broken because it 

interferes with the curve of ρ which has a jump occurring at the same day. The symbol ‘k’ 

denotes thousand. 

 

As our final example, a rerun of Fig. 4 of the Article proper but with the more transmissible 

mutant mentioned in §9. We also set CTmax to the value 100. This time, the knife-edge lies 

between nS = 750 and nS = 800. Below are the initial time traces for these two situations. 



 

Figure S7 : The initial portions of case trajectories and capacity ratio as a function of time for 

two contrasting situations. 

 

This is almost identical to what we saw in Fig. 4. In the subsequent evolution not shown 

here, the top panel proceeds almost unchanged to a cumulative caseload of 32,000 while 

the bottom panel takes off at around day #230 to reach a maximum daily rate of 2500 

cases and a cumulative caseload of almost 2,30,000. 

We can now give our observations. In all of the five Figures (4, S4-S7), the unfavourable 

case features a plateau with ρ < 1 transitioning into a wave, or an existing wave with ρ < 1 

accelerating further to mammoth proportions. Thus we can conclude that ρ < 1 is an 

indicator of imminent danger. In four of the five situations (exception is Fig. S5), in the 

favourable case ρ increases to or remains at unity during the critical phase and the 

epidemic proceeds to a happy conclusion. In Fig. S5-top, ρ does increase significantly after 

the lockdown but fails to attain the maximal value; even so, the wave is crushed by the 

severity of the lockdown. Thus, if we use ρ as a trend indicator, we might get a false alarm 



in this instance. Note however that from a public health perspective, false alarms are 

merely a nuisance while the converse – missing an impending escalation – can have tragic 

consequences. Extrapolating from Fig. S5, we might be tempted to calculate or assign a 

“safe lower bound” for ρ which is less than unity. This however is dangerous as Fig. S7 

shows – in this case, the unfavourable situation features a much higher ρ than Fig. S5-top. 

This smaller departure from unity is sufficient to set off the wave in Fig. S7-bot because 

(a) the viral strain here is more transmissible, and (b) CTmax here is higher so a smaller 

deviation corresponds to a larger absolute count of at large cases. For this reason, the only 

acceptable value of ρ is strictly unity; this is not too stringent a condition since ρ cannot 

exceed 1 by definition. 

Thus, extensive simulation results bolster our claim of efficacy of ρ as an early warning 

indicator. Even though many parameters – nU, PU, nS and mS to name just a few – influence 

the epidemic trajectories in subtle and diverse ways, the bottom line is that whether a wave 

will begin next week depends entirely on the capacity ratio this week. In our analysis we 

have defined nCT (a constituent of ρ) in terms of the model social structure and 

assumptions. This parameter can however be calculated and/or measured for any social 

structure. By now, the contact tracing authorities of most regions have a fair idea of how 

many contacts they need to track down per case to keep the disease in check – for example, 

an Australian study [42] reports that 25,300 contacts were traced for 619 cases during a 

period of decline and plateau, translating to average 40·9 contacts per case. This average 

multiplied by the daily case count approximately gives nCT. Deciding whether ρ is at or 

below unity in a real world scenario almost does not require any calculation – the moment 

the contact tracers feel that due to time or logistical constraints they are being unable to 

thoroughly investigate every emerging case, ρ has decreased below unity.  

We expect that ρ will also be related to the test positivity rate (TPR) in some way – lower 

ρ is expected to correspond to higher TPR. However, the exact nature of the association 

will depend significantly on the region’s testing policy for identified contacts, as well as 

walk-in symptomatic persons. Relying on TPR rather than ρ will also result in pointless 

delay of one serial interval before taking action, since the positive tests are expected to 

come out one serial interval after the exposures are identified. Hence we stick to ρ rather 

than TPR as the early warning indicator. 

§S4. Cautionary points for an efficient contact tracing system. In the Article 

proper, we have suggested an extensive contact tracing program as a key measure in 

combating the spread of COVID-19. To increase the efficiency of the program, the 

authorities might need to keep two things in mind.  

Firstly, a large-scale contact tracing program might have an unpleasant corollary in that 

many people may be treated as potential cases and quarantined despite not actually having 

been exposed to the virus. In our example of §7, if Team is a Type 1 cluster then only 

Bravo, Charlie and Delta are actual cases while Echo through Xray are also grounded out 

of abundance of caution. Thus, in this instance, there are more than six times as many 

quarantine orders issued as are necessary. For high-interaction persons like shopkeepers, 



such false alarms might be raised every few days. This will cause economic harm, undue 

mental stress as well as public lack of faith in the contact tracing system. To mitigate this, 

two options are available. The first is for asymptomatic suspected exposures to perform a 

daily self-test, the logistics of which as a quarantine substitute have been discussed in Ref. 

[41]. The second is to not ground the person entirely unless symptomatic but to ensure 

that over the next few days s/he follows 100 percent adherence to COVID-19 protocols at 

work and essential activities, and refrains from inessential activities. Data from Cornell 

University’s extensive case surveillance network has not found even one instance of in-

classroom viral transmission, suggesting that a ‘soft’ quarantine may be as effective at 

preventing transmission as a ‘hard’ one. 

The second point to remember is that many people might be unwilling to confess mask or 

separation violations to the contact tracers, for fear of legal repercussion and/or adverse 

judgement. Such false testimony will reduce the efficacy of the tracing program, and foster 

the spread of the disease. To elicit truthful information, there will have to be well-

publicized amnesty policies for instances of COVID-inappropriate behaviour determined 

from a contact tracing investigation (as against from say enforcement patrols). The tracers 

will also have to possess communication skills to not sound judgemental, critical or 

moralistic while asking or receiving answers to questions concerning people’s behaviour. 

§S5. Matlab codes used to generate the results. We give here the Matlab code 

which generates Fig. 1 of the Article proper. The codes for the remaining figures are trivial 

variations on this program. Since we have already given the algorithm in detail, the code 

itself might appear somewhat terse in places. The code is in a form that if you follow the 

accompanying instructions then you will be able to generate Fig. 1 at the end. 

First, please copy the following, paste it into a Matlab window and save it in a folder of 

your choice as the function file prob1.m. Although the code here reproduces Matlab’s 

default indentation, indentation may be lost when copying from the pdf. In this case, 

please use the smart indent feature (Ctrl+I) to improve the indentation. This instruction 

remains valid for all the pieces of code given here. 

function g = prob1(a,k,n,s) 

g = 1; 

for ii = 1:1:s-k 

    p = (n-a-ii+1)/(n-ii+1); 

    g = g*p; 

end 

 

for jj = 1:1:k 

    q = (a-jj+1)/(n-s+k-jj+1); 



    g = g*q; 

end 

 

for kk = 1:1:k 

    r = (s-k+kk)/kk; 

    g = g*r; 

end 

 

end 

Next, copy the following and save in the same folder as the function file prob2.m.  

function g = prob2(n,m,b) 

if m==1 

    g = 1; 

else 

    g1 = 1; 

    for ii = 1:1:b 

        p = (n-ii+1)/(n+m-ii); 

        g1 = g1*p; 

    end 

     

    if b==m 

        g2 = 1; 

    else 

        g2 = 1; 

        for jj = 1:1:m-b 

            q = (m-jj+1)/(n+m-b-jj); 

            g2 = g2*q; 

        end 

    end 



     

    if b==1 

        g3 = 1; 

    else 

        g3 = 1; 

        for kk = 1:1:b-1 

            r = (m-kk)/(b-kk); 

            g3 = g3*r; 

        end 

    end 

     

    g = g1*g2*g3; 

     

end 

 

end 

Next, please do the same with the function prob3.m, below. 

function g = prob3(w,j,n,b) 

 

if w>=n 

    g = 0; 

else 

    if b==j 

        g1 = 1; 

        for ii = 1:1:j 

            h = (n-w-ii+1)/(n-ii+1); 

            g1 = g1*h; 

        end 

        g = g1; 



    else 

        q = b-j; 

        g = prob1(w,q,n,b); 

    end 

end 

 

end 

The purpose of these three functions is to make feasible the evaluations of the probabilities 

involved, as has been discussed in the Appendix of Ref. [35]. After this, please copy and 

paste the following code and save as the function roundoff.m. 

function g = roundoff(x) 

 

g = zeros(2,1); 

 

ip = floor(x); 

fp = x-ip; 

 

if fp<0.5 

    g1 = ip; 

    g2 = fp; 

else 

    g1 = ip+1; 

    g2 = -(1-fp); 

end 

 

g = [g1; g2]; 

 

end 

With these preliminaries completed, please copy and paste the following routine into the 

matlab window and save it in the same folder as a script with any filename of your choice. 

This routine implements Algorithm 1. 



clear 

clc 

 

% Allocate space 

 

tee = 1500; 

 

tt = zeros(tee,1); 

 

xx = zeros(tee,1); % at large cases 

ddeltax = zeros(tee,1); 

qq = zeros(tee,1); % quarantined cases 

ddeltaq = zeros(tee,1); 

yy = zeros(tee,1); % total cases exlcuding familywala 

ddeltay = zeros(tee,1); 

 

zz1 = zeros(tee,1); % total number of type 1 clusters etc 

ddeltaz1 = zeros(tee,1); 

zz2 = zeros(tee,1); 

ddeltaz2 = zeros(tee,1); 

zz3 = zeros(tee,1); 

ddeltaz3 = zeros(tee,1); 

zz4 = zeros(tee,1); 

ddeltaz4 = zeros(tee,1); 

zz5 = zeros(tee,1); 

ddeltaz5 = zeros(tee,1); 

zz = zeros(tee,1); % total number of clusters exposed 

ddeltaz = zeros(tee,1); 

 



rro = zeros(tee,1); % contact tracing capacity fraction 

iimmune = zeros(tee,1); % count of immune people 

ww = zeros(tee,1); % total equivalent immune clusters 

ddeltaw = zeros(tee,1); 

ff = zeros(tee,1); % total familywala cases 

ddeltaf = zeros(tee,1); 

 

nnU = zeros(tee,1); 

nnS = zeros(tee,1); 

 

% Set constants 

 

% Basic constants 

 

N1 = 100800; 

NC = 4200; 

PU = 0.150; 

mS = 2; 

 

% Contact tracing parameters 

 

P0 = 0.5; 

P1 = 0.8; 

P2 = 0.0; 

P3 = 0.2; 

 

ctmax = 50; % maximum contact tracing capacity of the system 

 

cv = [1; 3; 6; 8; 5; 1]; 



% kappa1 = size(cv); 

% kappa = kappa1(1,1); 

 

for ii = 1:1:tee 

    tt(ii) = ii; 

    nnU(ii) = 10000; 

    nnS(ii) = 1800; 

end 

 

clearvars ii 

 

% Set initial conditions 

 

ww(6) = 8; 

ddeltaw(5) = 8; 

 

for ii = 1:1:6 

    lamda = 5*ii+4; 

    ddeltax(lamda) = 8*cv(ii); 

    ddeltay(lamda) = 8*cv(ii); 

end 

 

clearvars ii lamda 

 

qU1 = P0*P2; % Probability of type 1 cluster in UCT etc 

qU2 = (1-P0*P2)*P0*P1; 

qU3 = (1-P0*P2)*(1-P0)*(1-(1-P0)^3)*P1; 

qU4 = (1-P0*P2)*((1-P0)^4)*(1-(1-P0)^6)*P1; 

qU5 = 1-qU1-qU2-qU3-qU4; 



 

qS1 = P0*P3; 

qS2 = (1-P0*P3)*P0*P1; 

qS3 = (1-P0*P3)*(1-P0)*(1-(1-P0)^3)*P1; 

qS4 = (1-P0*P3)*((1-P0)^4)*(1-(1-P0)^6)*P1; 

qS5 = 1-qS1-qS2-qS3-qS4; 

 

 

% Main routine 

 

tee1 = tee-50; 

 

kmax = 80; 

errgamma = zeros(kmax,1); 

errbeta = zeros(kmax,1); 

errexpn1 = 0; 

errexpn2 = 0; 

errexpn3 = 0; 

errexpn4 = 0; 

errexpn5 = 0; 

s2 = 0; 

ro = 1; 

 

imax = tee1; 

 

for ii = 6:1:tee1 

     

    yi = yy(ii); 

    wi = ww(ii); 



     

    alpha = ddeltax(ii-1)+ddeltax(ii-2)+ddeltax(ii-3); 

    nU = nnU(ii); 

    nS = nnS(ii); 

    if ii>50 && alpha==0 

        imax = ii; 

        break 

    end 

     

    kceil = min([alpha; kmax]); % The maximum value of k to be 

considered 

     

    % SG 

     

    expnU = 0; 

     

    for k = 1:1:kceil 

        q = k*PU; 

        r = roundoff(q); 

        r1 = r(1); 

        r2 = r(2); 

        errgamma(k) = errgamma(k)+r2; 

         

        if errgamma(k)>1 

            gamma = r1+1; 

            errgamma(k) = errgamma(k)-1; 

        elseif errgamma(k)<-1 

            gamma = r1-1; 

            errgamma(k) = errgamma(k)+1; 

        else 



            gamma = r1; 

        end 

         

        if gamma==0 

            continue 

        end 

         

        for b = 1:1:gamma 

            for j = 1:1:b 

                h1 = prob1(alpha,k,N1,nU); 

                h2 = prob2(NC,gamma,b); 

                h3 = prob3(wi,j,NC,b); 

                expnU = expnU+j*h1*h2*h3; 

            end 

        end 

    end 

     

    expnU1 = expnU*qU1; 

    expnU2 = expnU*qU2; 

    expnU3 = expnU*qU3; 

    expnU4 = expnU*qU4; 

    expnU5 = expnU*qU5; 

     

    clearvars b k j 

     

    % LG 

     

    expnS = 0; 

     



    for k = 1:1:kceil 

        q = k*mS; 

        r = roundoff(q); 

        r1 = r(1); 

        r2 = r(2); 

        errbeta(k) = errbeta(k)+r2; 

         

        if errbeta(k)>1 

            beta = r1+1; 

            errbeta(k) = errbeta(k)-1; 

        elseif errbeta(k)<-1 

            beta = r1-1; 

            errbeta(k) = errbeta(k)+1; 

        else 

            beta = r1; 

        end 

         

        if beta==0 

            continue 

        end 

         

        for b = 1:1:beta 

            for j = 1:1:b 

                k1 = prob1(alpha,k,N1,nS); 

                k2 = prob2(NC,beta,b); 

                k3 = prob3(wi,j,NC,b); 

                expnS = expnS+j*k1*k2*k3; 

            end 

        end 



    end 

     

    expnS1 = expnS*qS1; 

    expnS2 = expnS*qS2; 

    expnS3 = expnS*qS3; 

    expnS4 = expnS*qS4; 

    expnS5 = expnS*qS5; 

     

    expn = expnU+expnS; 

    expn1 = expnU1+expnS1; 

    expn2 = expnU2+expnS2; 

    expn3 = expnU3+expnS3; 

    expn4 = expnU4+expnS4; 

     

    trace = 24*(expn1+expn2+expn3+expn4); 

    if trace>=ctmax 

        ro = ctmax/trace; 

    else 

        ro = 1; 

    end 

    rro(ii) = ro; 

     

    expn1 = expn1*ro; 

    expn2 = expn2*ro; 

    expn3 = expn3*ro; 

    expn4 = expn4*ro; 

    expn5 = expn-(expn1+expn2+expn3+expn4); 

     

    a1 = roundoff(expn1); 



    a11 = a1(1); 

    a12 = a1(2); 

    errexpn1 = errexpn1+a12; 

    if errexpn1>1 

        dz1i = a11+1; 

        errexpn1 = errexpn1-1; 

    elseif errexpn1<-1 

        dz1i = a11-1; 

        errexpn1 = errexpn1+1; 

    else 

        dz1i = a11; 

    end 

    ddeltaz1(ii) = dz1i; 

     

    a2 = roundoff(expn2); 

    a21 = a2(1); 

    a22 = a2(2); 

    errexpn2 = errexpn2+a22; 

    if errexpn2>1 

        dz2i = a21+1; 

        errexpn2 = errexpn2-1; 

    elseif errexpn2<-1 

        dz2i = a21-1; 

        errexpn2 = errexpn2+1; 

    else 

        dz2i = a21; 

    end 

    ddeltaz2(ii) = dz2i; 

     



    a3 = roundoff(expn3); 

    a31 = a3(1); 

    a32 = a3(2); 

    errexpn3 = errexpn3+a32; 

    if errexpn3>1 

        dz3i = a31+1; 

        errexpn3 = errexpn3-1; 

    elseif errexpn3<-1 

        dz3i = a31-1; 

        errexpn3 = errexpn3+1; 

    else 

        dz3i = a31; 

    end 

    ddeltaz3(ii) = dz3i; 

     

    a4 = roundoff(expn4); 

    a41 = a4(1); 

    a42 = a4(2); 

    errexpn4 = errexpn4+a42; 

    if errexpn4>1 

        dz4i = a41+1; 

        errexpn4 = errexpn4-1; 

    elseif errexpn4<-1 

        dz4i = a41-1; 

        errexpn4 = errexpn4+1; 

    else 

        dz4i = a41; 

    end 

    ddeltaz4(ii) = dz4i; 



     

    a5 = roundoff(expn5); 

    a51 = a5(1); 

    a52 = a5(2); 

    errexpn5 = errexpn5+a52; 

    if errexpn5>1 

        dz5i = a51+1; 

        errexpn5 = errexpn5-1; 

    elseif errexpn5<-1 

        dz5i = a51-1; 

        errexpn5 = errexpn5+1; 

    else 

        dz5i = a51; 

    end 

    ddeltaz5(ii) = dz5i; 

     

    dzi = dz1i+dz2i+dz3i+dz4i+dz5i; 

     

    ddeltax(ii+5) = ddeltax(ii+5)+(dz2i+dz3i+dz4i+dz5i)*cv(1); 

    ddeltax(ii+10) = ddeltax(ii+10)+(dz3i+dz4i+dz5i)*cv(2); 

    ddeltax(ii+15) = ddeltax(ii+15)+(dz4i+dz5i)*cv(3); 

    ddeltax(ii+20) = ddeltax(ii+20)+dz5i*cv(4); 

    ddeltax(ii+25) = ddeltax(ii+25)+dz5i*cv(5); 

    ddeltax(ii+30) = ddeltax(ii+30)+dz5i*cv(6); 

     

    ddeltaq(ii+5) = ddeltaq(ii+5)+dz1i*cv(1); 

    ddeltaq(ii+10) = ddeltaq(ii+10)+dz2i*cv(2); 

    ddeltaq(ii+15) = ddeltaq(ii+15)+dz3i*cv(3); 

    ddeltaq(ii+20) = ddeltaq(ii+20)+dz4i*cv(4); 



     

    ddeltay(ii) = ddeltax(ii)+ddeltaq(ii); 

     

    immune = 1*dz1i+4*dz2i+10*dz3i+18*dz4i; 

    s1 = rem(immune,24); 

    dwi = dz5i+(immune-s1)/24; 

    s2 = s2+s1; 

    if s2>=24 

        s2 = s2-24; 

        dwi = dwi+1; 

    end 

     

    ddeltaw(ii) = dwi; 

     

    yf = yi+ddeltay(ii); 

    wf = wi+dwi; 

    yy(ii+1) = yf; 

    ww(ii+1) = wf; 

     

    xx(ii+1) = xx(ii)+ddeltax(ii); 

    qq(ii+1) = qq(ii)+ddeltaq(ii); 

     

    if mod(ii,20)==1 

        disp(ii) 

        disp([dz1i dz2i dz3i dz4i dz5i]) 

        disp(ro) 

    end 

     

end 



 

clearvars k b j ii jj 

 

% Mop up the cases after break loop 

 

for ii = imax-1:1:tee1 

    xi = xx(ii); 

    xf = xi+ddeltax(ii); 

    xx(ii+1) = xf; 

    qi = qq(ii); 

    qf = qi+ddeltaq(ii); 

    qq(ii+1) = qf; 

    yi = yy(ii); 

    yf = yi+ddeltax(ii)+ddeltaq(ii); 

    yy(ii+1) = yf; 

end 

 

% Include the familywala cases 

 

for ii = 1:1:tee1 

    ddeltaf(ii+5) = 2*ddeltax(ii); 

    ff(ii+5) = 2*xx(ii); 

end 

 

clearvars ii 

 

vv = yy+ff; 

ddeltav = ddeltay+ddeltaf; 

 



% Plot 

 

bar(ddeltav) 

We have verified that after performing these steps, Fig. 1 appears on the screen minus the 

beautification. 


